Search results for " 05C21"
showing 2 items of 2 documents
Least gradient functions in metric random walk spaces
2019
In this paper we study least gradient functions in metric random walk spaces, which include as particular cases the least gradient functions on locally finite weighted connected graphs and nonlocal least gradient functions on $\mathbb{R}^N$. Assuming that a Poincar\'e inequality is satisfied, we study the Euler-Lagrange equation associated with the least gradient problem. We also prove the Poincar\'e inequality in a few settings.
$(BV,L^p)$-decomposition, $p=1,2$, of Functions in Metric Random Walk Spaces
2019
In this paper we study the $(BV,L^p)$-decomposition, $p=1,2$, of functions in metric random walk spaces, a general workspace that includes weighted graphs and nonlocal models used in image processing. We obtain the Euler-Lagrange equations of the corresponding variational problems and their gradient flows. In the case $p=1$ we also study the associated geometric problem and the thresholding parameters.